Science

These worms have rhythm | ScienceDaily

There’s a rhythm to developing life. Growing from a tiny cell cluster into an adult organism takes precise timing and control. The right genes must turn on at the right time, for the right duration, and in the correct order. Losing the rhythm can lead to diseases like cancer. So, what keeps every gene on beat?

Cold Spring Harbor Laboratory (CSHL) Professor Christopher Hammell has found that in the worm C. elegans, this genetic orchestra has no single conductor. Instead, a quartet of molecules works in concert to time each developmental stage. Hammell says this process shares some similarities with the circadian clocks that control human behavior. Understanding how the worm’s clock is regulated could help explain how time affects development in other animals. Hammell explains:

“This clock we’ve discovered sets the cadence of development. It’s a coordinator of the orchestra. It controls when the trombone goes, how loud it gets, and how long the note lasts.”

Each stage of C. elegans‘ development begins with two proteins, NHR-85 and NHR-23. They work together to spark a pulse of gene expression, switching on the microRNA lin-4, which controls stem cell development patterns. The pulse’s timing, strength, and duration depend on the short stretch when NHR-85 and NHR-23 interact, and another protein, LIN-42, which ends each developmental period by shutting off NHR-85.

“Mess up the orchestra — it’ll still make sound,” Hammell says. “But the way the music changes lets us know proper timing is critical for development.”

Hammell teamed with Wolfgang Keil from Paris’ Curie Institute to observe this gene expression cycle in action. C. elegans takes about 50 hours to reach adulthood. During that time, it’s always on the move, like a restless teenager. The team developed a new imaging technique to hold the tiny worm in place long enough to take pictures and video. This let them measure each developmental beat as it occurred.

“We could see every time genes turned on from birth to adulthood,” Hammell says. “This kind of imaging had never been done in animals, only in single cells.”

Hammell is now working with CSHL Professor & HHMI Investigator Leemor Joshua-Tor to image how clock proteins interact over time.

“We want to work out, with even more precision, how this clock operates,” Hammell says. “Humans can do things like write music or perform calculus, not because we have a calculus or music gene, but because our developmental clocks enable our brain to develop longer into a more complex organ.”

In other words, when it comes to development, time is truly of the essence.

Source link

24timenews.com

Recent Posts

Women’s Ashes 2024-25 – Sophie Molinuex ruled out of Ashes, Georgia Voll included

Allrounder Sophie Molineux has been ruled out of the multiformat Ashes series due to a…

4 hours ago

Genesis to go from scale model to Le Mans in 18 months

Genesis' LMDh race car currently only exists as a half-scale model To speed up development,…

4 hours ago

Digital healthcare consultations not enough for safe assessment of tonsillitis

Digital healthcare consultations are not enough for a safe assessment of tonsillitis, according to a…

5 hours ago

Roblox Arm Wrestle Simulator Codes (December 2024)

Roblox's Arm Wrestle Simulator has gained significant popularity since its release. In the game, players…

5 hours ago

Digi Yatra achieves major milestones in 2024, poised for international expansion in 2025, ET TravelWorld

Digi Yatra, the Self-Sovereign Identity (SSI)-based platform using face biometric technology for seamless passenger processing…

14 hours ago

ZIM vs AFG 2024/25, Zimbabwe vs Afghanistan 1st Test, Day 2, Bulawayo Match Report, December 26 – 30, 2024

Afghanistan 95 for 2 (Rahmat 49*) trail Zimbabwe 586 (Bennett 110*, Ervine 104, Ghazanfar 3-127)…

14 hours ago